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1. Introduction

Relating to thermal design of regenerative heat ex-
changers, catalytic converters, and adsorption beds,
modeling of forced-convection heat transfer in porous
media is an important research subject in thermal en-
gineering. Numerous experimental researches, theoretical
analyses and numerical simulations have been made
during past few decades. At the present time, Darcy—
Brinkman-Forchheimer model simultaneously consid-
ering the inertia and boundary effects [1] with the radial
porosity variations [2,3] is adopted as the momentum
equation. Furthermore, in the energy equation, the ef-
fects of porosity-dependent radial thermal dispersion,
variable effective thermal conductivity and thermal ra-
diation [4-7] are taken into account. Inclusion of these
effects in the governing equations has greatly improved
the porous media models and these effects in porous
media were verified to a certain extent by various ex-
perimental data. However, these models still do not
account for all of the physical phenomena that may exist
in porous media.

Almost all previous theoretical studies are based on
the hypothesis that the effect of heat generation due to
viscous dissipation in porous media on heat transfer
characteristics is negligible. The viscous dissipation term
in an empty tube can be confidently neglected for most
cases. In porous media, however, a solid—fluid contact
area is many times greater than the duct surface area.
Then, is it a correct assumption for all flow conditions?
The purpose of the present note is to examine the
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validity of the premise that the effect of viscous dissipa-
tion on forced-convection heat transfer in packed beds
can be neglected. To this end, first, we extend the previ-
ous heat transfer model [6] by taking into account the
effect of viscous dissipation in the energy equation. And
then we solve the governing equations numerically under
adiabatic and isothermal boundary conditions. The re-
sults are compared with available experimental data.

2. Analysis

The following assumptions are introduced for the
analyses:

1. the fluid and solid phases are in local thermal equilib-
rium;

2. the flow field is hydrodynamically fully developed at
the inlet of the packed bed;

3. the fluid enters the bed with a uniform inlet tempera-
ture Tp;

4. the wall of the bed is adiabatic or is kept at constant
temperature;

5. the fluid is liquid such that the relevant physical prop-
erties except for the volumetric expansion coefficient
do not depend on temperature;

6. local porosity within the packed bed varies with dis-
tance from the boundaries alone;

7. the boundary-layer approximation is valid.

Under these assumptions, the steady-state continuity

and momentum equations for forced-convection in

variable porosity media are

— =0, (1)
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Nomenclature

B PT, for the adiabatic wall and fT,, for the
isothermal wall

C inertial coefficient (= 1.75(1 — ¢)/d,$")

c C/Cx

Cp specific heat (J/kg K)

Da  Darcy number (= K. /r3)

dy particle diameter (m)

E: dimensionless pressure gradient defined by
—(dp/dx)/(pie, /2ry | Re Pr)

E; modified Eckert number defined by
(ve /2r0)2 /cp Ty for the adiabatic wall and by
(ve/2r0)*/ ¢, T for the isothermal wall

F, Forchheimer number (= Cwr9)

K permeability (= d2¢*/150(1 — ¢)°)

K* K /K

kq thermal dispersion conductivity of a packed
bed (W/m K)

k thermal conductivity (W/m K)

Nu, mean Nusselt number defined in Eq. (12)

Pr Prandtl number of fluid (= uc,/kr)

Pec  Peclet number (= RePr)

Re Reynolds number based on the diameter of a
packed column (= 2upry/v)

r radial coordinate

0 radius of a cylindrical packed-column (m)

T temperature (K)

u axial velocity (m/s)
U dimensionless axial velocity (= u/upy)
X axial coordinate

Greek symbols

r ratio of the radius of a packed column to the

particle diameter (= ry/d,)

dimensionless radial coordinate (= r/ry)

dimensionless temperature defined by 7'/T; for

the adiabatic wall and by T/T,, for the

isothermal wall

K ratio of thermal conductivity of the solid to
that of the fluid (= k;/k¢)

14 dimensionless axial coordinate

(= x/2r0/ (Re Pr))

kinematic viscosity of fluid (m?/s)

viscosity of fluid (Pa s)

density of fluid (kg/m?)

porosity

>

S = <=

Subscripts

effective

fluid

solid

mean

wall

inlet

quantity at ¢ = 0.39

80290)'—‘1@

The energy equation may be written as

or 13 or dp

The dissipation term @ [8] represents the mechanical
power needed to extrude the viscous fluid through the
pore and is equal to the flow rate times the externally
maintained pressure drop [= u(—dp/dx)], provided that
the kinetic energy remains constant along the flow di-
rection. The third term of the right-hand side denotes
the amount of heat absorbed by a volume element due to
thermal expansion. Although this term is small enough
compared with @, it cannot be neglected in considering
the effect of viscous dissipation in a porous medium.
Because, in the case of ideal gases, f becomes 1/7 and
the second and third terms of the right-hand side are
cancelled each other: this is fully consistent with the fact
that the Joule-Thomson expansion of ideal gases in a
constant enthalpy process does not yield any tempera-
ture change.

Moreover, it is of interest to note that, in Eq. (3), the
effect of turbulence in a packed bed is empirically taken
into account in form of the thermal dispersion conduc-
tivity.

The corresponding boundary conditions are

r=0: 0u/or=0T/or=0, r=ry: u=0,
0T/or =0 for the adiabatic wall or 4)
T =T, for the isothermal wall.

Introducing the dimensionless quantities defined in the
nomenclature yields the governing equation of the form

Ei KU FRe_, , 1 0[dU

u CU———(n=—= 5
4Pr  Da + 2 ¢dn o "an ’ (5)
1. .00 10 0] 1
“U—==(qle+ ) —| +=EE:RU(1 —BO). (6
47 0¢ nan["( +Ad)©n]+4 WEReUL (8

The equation of continuity may be represented in the
integral form

Z/OInUdnzl. (7)

The relevant boundary conditions are

n=0: 0U/onp=00/on =0,
n=1: U=0, 00/on=0
for the adiabatic wall or
0 =1 for the isothermal wall.
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3. Numerical methods

To determine the velocity and temperature profiles,
the dimensionless momentum and energy equations
were integrated numerically using a finite difference
scheme. Variable grids in the axial direction were
adopted to produce accurate velocity and temperature
results. The grid size in the axial direction was very fine
near the inlet and coarser downstream, but fine enough
to yield accurate results. The dimensionless radius of the
bed was divided into 300 equally spaced increments for
the adiabatic boundary condition. However, for iso-
thermal wall, the radius of the bed was divided into 331
unequally spaced increments and dimensionless mesh
size Ay was increased gradually from the wall toward the
core region according to a geometric series defined by
An = Anya™" with Any =5 x 1075 and a = 1.018. The
diffusion terms were discretized using central difference
formulas while the convection term in the energy equa-
tion was discretized by a backward difference scheme.

Since the Forchheimer term in the momentum
equation is nonlinear, initial values of the velocity field
were guessed at all the radial grid points for linearization
and then this term was represented as the product of the
unknown velocity and the guessed velocity. Finite dif-
ference equations derived from the momentum equation
together with Eq. (7) constitute a set of simultaneous
linear equations and were solved by Gaussian elimina-
tion to yield the velocity field for one iteration. The
above process was repeated until convergence was
achieved within a prescribed error. With the results of
velocity in hand, the discretized form of the energy
equation was solved to yield the temperature field.

The mixing-cup temperature was evaluated by

0
T = 211:/ T(r)u(r)rdr/mri, 9)
0
and may be rewritten in the dimensionless form
1
Om = 2/ Ubndn. (10)
0

For the adiabatic boundary condition, we can obtain the
following analytical result as

0n(&) = 1 — exp(—E{E] RS’ BE)|/B + exp[~E; E, Re BE).
(11)

Surprisingly, this expression indicates that the thermal
conductivity of the solid does not affect the mixing-cup
temperature at all. The local mean Nusselt number in
the packed bed was defined by

Nutm (&) = In[(1 = 6o) /(1 — O (£))]/4E. (12)

4. Physical properties

(a) Stagnant effective thermal conductivity: It was
evaluated utilizing Bruggeman’s theory. According to
this theory, 4. may be given by

ok
c—kf

= (k- D' V_];\/Z\E/Hzﬂ tr, (13)

where

PETEAPICS

27 K2

(b) Lateral thermal dispersion conductivity: K4 represents
a degree of thermal transport due to the lateral mixing of
local fluid streams within a packed bed and was given by
the following expression [6]:

Ja = ka/ke = 0.3519(1 — ¢)* " PrRe U () /2T (14)

(c) Porosity distribution function: To account for the
porosity variations near the wall, the following expres-
sions [6] were utilized throughout the present study:

For 0<(<0.6,

() =1 —3.10036( + 3.70243(* — 1.24612(°.
For 0.6 < {<T,

() = —0.1865 exp(—0.22(}*) cos(7.66,) + 0.39,

(15)
where { = (ry —r)/d, and {; = —0.6.

5. Results and discussion

In order to examine the effect of viscous dissipation,
calculations were performed for both adiabatic and
isothermal wall conditions. Fig. 1 illustrates the varia-
tions of the mixing-cup temperature along the flow di-
rection for the adiabatic boundary condition. The
dimensionless bulk mean temperature increases mono-
tonically with £. From this figure, it is clear that heat is
locally generated due to viscous dissipation and the
amount of generated heat increases with I’ and the
Reynolds number. The agreement between the numeri-
cal results and the analytical predictions from Eq. (11) is
so excellent that the difference between them is indis-
cernible.

Fig. 2 illustrates the comparison of MNu, calculated
for isothermal wall with the experimental data of
Chennakesavan and Kuzuoka reported in [9]. The basic
data necessary for the theoretical calculations such as
Pr, k, I and Re were taken from the same literature [9].
The solid lines represent Nu, with viscous dissipation,
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Fig. 1. Axial variations in the dimensionless mean temperature
rise for the adiabatic wall.
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Fig. 2. Calculated and experimental mean Nusselt numbers for
the isothermal wall.

while the broken lines represent those for without vis-
cous dissipation. The experimental data are denoted by
the symbols. It is seen that numerical results agree sat-
isfactorily with the experimental ones, and this confirms
the validity of the present model. It is also found that at
Peclet numbers greater than about 10%, the effect of
viscous dissipation on mean Nusselt number is signifi-
cant. This is caused by the fact that, as Peclet number is
increased, local mean temperature is increased due to
internal fluid friction within a packed bed and thus the
value of local mean Nusselt number is raised. This ten-
dency agrees with the case of heat transfer in empty
tubes. A detailed parametric study of packed-bed heat
transfer in the presence of viscous dissipation has been
made in [10].

6. Conclusion

Thermally developing forced-convection heat trans-
fer in cylindrical packed-bed, under the conditions of the
adiabatic and isothermal boundaries were examined
theoretically based on a two-dimensional, distributed
parameter model taking account of the effects of non-
Darcy, viscous dissipation, variable porosity and radial
thermal dispersion. Special emphasis was given to the
heat generation due to viscous dissipation in forced
convection liquid flow. It was found that, in the case of
the adiabatic boundary, the effect of internal heat gen-
eration associated with viscous dissipation increases
with I’ and Reynolds number. For the isothermal
boundary, the effect of viscous dissipation on heat
transfer characteristics is negligible in the range of Peclet
number less than about 10*.
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